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We study several different Z, topological ordered states in frustrated spin systems. The effective theories for
those different Z, topological orders all have the same form—a Z, gauge theory which can also be written as
a mutual U(1) X U(1) Chern-Simons theory. However, we find that the different Z, topological orders are
reflected in different projective realizations of lattice symmetry in the same effective mutual Chern-Simons
theory. This result is obtained by comparing the ground-state degeneracy, the ground-state quantum numbers,
the gapless edge state, and the projective symmetry group of quasiparticles calculated from the slave-particle
theory and from the effective mutual Chern-Simons theories. Our study reveals intricate relations between

topological order and symmetry.
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I. INTRODUCTION

After the discovery of fractional quantum Hall effectm,!
we realized that a different kind of orders beyond Landau’s
symmetry breaking paradigm is possible. This different kind
order is called topological order>® for gapped states and
quantum order* for general states. The orders reflect patterns
of long-range entanglements in the ground state.

Gapped Z, spin liquids have the simplest kind of topo-
logical order—Z, topological order.>® Those topological or-
dered states may appear in frustrated spin systems or dimmer
models.>~!! Physically, the topological orders can be (par-
tially) characterized by robust ground-state degeneracy.®!”
The low-energy effective theory for those Z, topologically
ordered states is a Z, gauge theory.

Topological order is a property of a many-body ground
state that is robust against any perturbations, even those per-
turbations that break all the symmetries. In this paper, we
would like to study the interplay between topological order
and symmetry. We would like to find out how to characterize
topological ordered states that also have certain symmetries.

Recently, it was found that for spin liquids with all the
lattice symmetries (such as lattice translation and rotation
symmetry), there can be hundreds different Z, topological
orders.*? We will call those topological orders symmetric
topological orders. It is shown that the different symmetric
Z, topological orders can be characterized by different
project symmetry groups (PSG). So those symmetric topo-
logical orders are good examples to study the relation be-
tween topological order and symmetry.

Here, using two examples of Z, topological orders (we
call them Z2A and the Z2E states in below), we would like
to study their low-energy effective theories and ask how dif-
ferent symmetric Z, topological orders are reflected in low-
energy effective theories. It was pointed out that the Z, gauge
theory can be described by effective mutual U(1) X U(1)
Chern-Simons (CS) theories.!3"'> We find that the two types
of Z, topological orders (Z2A and Z2E states) can indeed be
described by the same effective mutual U(1) X U(1) CS
theories. In the effective mutual CS theories, the lattice sym-
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metry is realized projectively. It turns out that the two differ-
ent symmetric Z, topological orders have different projective
realizations of the lattice symmetries.

After knowing how lattice symmetries are realized in the
effective mutual CS theory, we can use the effective theory
to calculate the numbers of degenerate ground states and
their quantum numbers under those lattice symmetries. To
confirm those results from effective theory, the projective
construction (the slave-particle theory)'®!7 is used to calcu-
late the ground-state degeneracies, the ground-state quantum
numbers, and the PSGs of quasiparticles. Those results agree
with the results from the effective mutual CS theories. Fur-
thermore, we also used the effective mutual CS theories to
study gapless edge states for the two types of Z, topologi-
cally ordered states.

II. PROJECTIVE CONSTRUCTION OF MANY-SPIN WAVE
FUNCTIONS

The key to understand topological orders is to construct
states that can have long-range quantum entanglements. The
projective construction introduced in the study of high T,
superconductors is a powerful way to construct such
states.'®~1% In this section, we will briefly review the projec-
tive construction of Z, topologically ordered states.

A spin-1/2 model can be viewed as a hard-core-boson
model if we identify || ) state as a zero-boson state |0) and
[1) state as a one-boson state |1). In following parts we will
use the boson-picture to describe our model.

We first introduce a “mean-field” fermion Hamiltonian®

Hmean = % (lpszuzI/JwJ] + lﬂ;zﬂglﬂj, + h-C-) 4 (1)
ij

where 1,/=1,2. We will use u;; and 7,; to denote the 2 X2
complex matrices whose elements are u’ and l-f . Let
| W7y be the ground state of the above free fermion
Hamiltonian (i.e., the lowest energy state obtained by filling
all the negative-energy levels). Then a many-boson wave
function can be obtained through
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LG iy iy...) = (0] H b(i,) |7y (2)

spin

where N is the number of lattice sites,

b(i) = Y i, (3)

and iy, i,, and ... label the location of bosons (up spins).
Here, we have assumed that there are N./2 up spins and
N/ 2 down spins.

We may view (u;;,7;;) as Varlatlonal parameters and the
physical spin-wave function CDS”;;I i)(iis...) as a trial wave
function. The trial ground state of a spin Hamiltonian can be
obtained by minimizing the average energy (H).

First let us consider the following spin Hamiltonian:

Fi= Ol O O e o O (4)

Hexact: 82 F[» i+ i+ 245 Y i+
i

where o are the Pauli matrices and i=(i,,i,) labels the

site of a square lattice. We find that if we choose the varia-

tional parameters to be

= Mpipr = Ui =1+ 7,

= Mijsg = Ui =1 T, (35)
then the spin-wave function Eq. (2) minimizes the average
energy. In fact the wave function is the exact ground state of
Hamiltonian H.,,,..” It was found that all the excitations
above the ground state are gapped and the ground state con-
tains a nontrivial topological order described by a Z, effec-
tive gauge theory. We will call such a state Z2E state.

Ref. 6 introduced another many-spin state on square lat-
tice which is described by

3
ui,i+x u; 1+y XT 5

=7 + N7,

Ujjriey =
1
Ui sey= T — N,

U= vr! s (6)

and 7;;=0. However, it is not clear what kind of spin Hamil-
tonian gives rise to the spin state described by the above
variational parameters. Despite this, some physical proper-
ties of the spin state were obtained under the assumptions
that the state is stable for a certain local spin Hamiltonian.®
Again, all excitations above the spin state have finite-energy
gaps. The spin state is a spin liquid with no spin order. But it
contains a nontrivial topological order described by an effec-
tive Z, gauge theory. So we will call such a spin state Z2A
state.

Naively, one may expect the Z2A and the Z2E states to be
the same state since both have Z, gauge theory as their low-
energy effective theory. In the following, we will show that
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FIG. 1. The links crossing the x and y lines get an additional
minus sign.

they are different quantum states with different topological
orders.

III. GROUND-STATE DEGENERACY

One way to study a topological order is to study its
ground-state degeneracy on a torus. Naively, we expect the
Z2A and the Z2E state to have four degenerate ground states
as implied by the effective Z, gauge theory. The argument
goes as follows.

First, we note that the physical boson wave function
®ip7)({i }) is invariant under the following SU(2) gauge
transformations'®

(l//l’ lj’ 77[_]) - (G lpl’G ul_] j’G nleT) (7)

where G; e SU(2) So the average energy E(u;, ;)
=(D Ui |H|<D i)y satisfies

E(uz]?nzj) E(Gulj j’G 771]GT

Next we assume that (iz;;, 7;;) give rise to a (variational)
ground state of a Hamiltonian. We would like to show that
the following four Ansdtze

ul(jm,n) — (_ )msx(ij)(_ )n.vy(ij)ﬁij’

7y = (= g, (8)

produce four degenerate ground states. Here m,n=0, 1. s,(ij)
and s,(ij) have values 0 or 1. s,(ij)=1 if the link ij crosses
the x line (see Fig. 1) and s5,(ij)=0 otherwise. Similarly,
sy(ij)=1 if the link ij crosses the y line and s,(ij)=0 other-
wise. Physically, the degenerate states arise from adding
flux through the two holes of the torus. The values of
m,n=0,1 reflect the presence or the absence of the 7 flux in
the two holes.

We note that (1>, 7750 0)) represents the ground state. We
also note that (u(”/ o 77,"“’)) with different m and n are lo-
cally gauge equlvalent ThlS is because, on an infinite sys-
tem, the change, say, u;;— (= ymsxli) (= ymsy (’J)u can be gener-
ated by an § U(Z) gauge transformatlon uj— Wu W where
W= ()00, and ©(n=1 i n>0 and & "0ln)=0 if
n=0. As a result, E(it;;, 77;;) = E(u(’” ", nlm ™). On the other
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hand, on a torus, (u(m | 771’” ") with different m and n are not
gauge equivalent in the global sense. There is no SU(2)
gauge transformation defined on the torus that connects those
Ansdtze. So the four Ansdtze give rise to four different de-
generate states. This is how we obtain the fourfold ground-
state degeneracy for the Z, states.

However, the above argument is valid only for even by
even lattice. For odd by odd lattice, the argument breaks
down. To understand the failure of the above argument, let us
construct the mean-field ground state more carefully.

Let us start with a simple case of the Z2A state. For the
Ansatz Eq. (6), the mean-field Hamiltonian in momentum
space becomes

PHYSICAL REVIEW B 78, 155134 (2008)

Hpean(k) = Ewm%mdfﬂ

= e(K)ajay — > (k) BB, 9)
k

k
where
M =2x(cos k, + cos k) 73
+[27 cos(k, + k) + 27 cos(k, — k) + vl
+[2\ cos(k, + k,) — 2\ cos(k, — ky)]Tz,

and

e(k) = V/4X2(cos k. + cos ky)2 +[27 cos(k, + ky) + 27 cos(k, — k) + v)? + [2\ cos(k, + ky) =2\ cos(k, - ky)]z.

Here oy and By are diagonalized quasiparticles operators

ay = (ah+ ) N1 + a?,

B = (b + o) N1 + b,

where a and b are the functions of k, and k,. The mean-field
ground state is obtained by filling all the negative levels and
is given by

|q,mean> = H B]t|0>|/n
k

where the state |0),, is defined through ¢4/0),=0. (Note that
all the particles ¢y has positive energy and all the particles
By has negative energy.) Since ,Bk is linear combination of 1,0]
and ¢} and there are L, X L, different k levels, the mean-field
state |Weqn) cONtains L, ><L number of fermions. Here L, ,
are sizes of the lattice in the x and y directions.

Clearly, mean) CONtains an
odd number of fermions. Such a mean-field state does not
correspond to any physical spin state since the corresponding
spin-wave function Eq. (2) vanishes. [Note that Eq. (2) is a
projection to the subspace with 0 or 2 fermions per site.] To
get a nonzero physical spin-wave function we need to start
with a mean-field state with one extra fermion in the empty «
band (or a hole in the filled 8 band). But by choosing differ-
ent states for the extra fermion (or the hole), we can obtain
many different spin-wave functions which are nearly degen-
erate. So when both L, and Ly are odd, the excitations in the
Z2A state are gapless, or we may say that the Z2A state has
infinite degeneracy. Physically, the Z2A state on odd by odd
lattice always contains an unpaired spinon. The different
states of the unpaired spinon give rise to the infinite degen-
eracy.

When one of L, is even, the mean-field state [V ean?
gives rise to a nonzero physical spin state. There is no un-
palred spinon, and the excitations are gaped. Each Ansatz

tmm) produces a single physical spin state, and the Z2A state

has fourfold degeneracy on a torus with an even number of
lattice sites.

Because the spin Hamiltonian is translation invariant, the
ground states carry definite crystal momentum. To calculate
the crystal momentum, we note that in the (m,n)=(0,0) sec-

tor described by the Ansatz ufjo ), the fermion wave function

satisfies the periodic boundary condition. So (k,,k,) are
2m
quantized as (k,,k,)= (nXL , )L—) where n,, are integers.

Moreover, the spin state produced by the Ansatz u(o % has the
following crystal momentum:

L, L,
2 L,L(L.,+1)2
k=Sk=> 3,27 _ L+ 1) 2m
n_ln_l L 2 Lx

L. L
T - 2 LL(L,+1)2
K=k=3 En m _w”,
n_ln_l 2 Ly

We would like to point out that the above crystal momentum
is actually the crystal momentum of the mean-field state.
However, the even-fermion-per-site projection commutes
with the translation operator, and thus the crystal momentum
is unchanged by projection.

When m and/or n are equal to 1, the fermion wave func-
tion is antiperiodic in the y and/or x directions. In the case, k,
and/or k, are quantized as (n\,+2) I and/or (n, +2)2—” The
crystal momentum of the spin state produce by the Ansatz

™" can be calculated in the similar fashion. For example in

the (m,n)=(1,1) sector, the crystal momentum is given by

EX 2( )277' L,L(L,+2)2m

iyt o)L 2 L’
L, L

1\2# L.L,(L,+2)27

k=3 3 (ne )2 tiile22n

i 2/ L, 2 L,

The results are summarized in the Table I.
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IV. TOPOLOGICAL PROPERTIES FOR THE EXACT
SOLUBLE MODEL

To understand the topological order in the Z2E state of the
exact soluble model, we would like to calculate the ground-
state degeneracy and ground-state crystal momenta of the
Z2E state. Just like the Z2A state discussed in the last sec-
tion, one can construct many-spin wave functions of the de-
generate ground states from the mean-field Ansdze Eq. (8)
with (u;;, 7;;) given by Eq. (5). The four mean-field Ansdtze
(u?f’”),r]gf’”) can potentially give rise to four degenerate
ground states. But some time, the mean-field ground state
contains odd numbers of fermions. In this case, the corre-
sponding mean-field Ansatz does not lead to physical spin-
wave function.

. k,
Hmean(k) = 2 (lll{k’ dﬁ,—k)( C.OS

=0 —isink, —cosk,

T
1k

roin ks )( ik ) + S (e wz,_k)( cosky

k>0
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TABLE I. Crystal momenta (K,,K,) of the four ground states,
(m,n)=(0,0),(0,1),(1,0),(1,1), of the Z2A spin liquid on three
different lattices, (L,,L,)=(even,even),(even,odd), and (odd,even).

(K. K,) (ee) (o) (0e) (00)
(00) (0,0) (7,0) 0,m) —
(01) (0,0) (7,0) (0,0) —
(10) (0,0) (0,0) 0,m) —
(11) (0,0) (0,0) (0,0) —

To calculate the fermion number in the mean-field ground
state, one can write down the mean-field fermion Hamil-
tonian in momentum space

isink ¢2k -
’ )( ) + w:k(v[/lk|kx:0,ky:0

: t
—isink, —cosk,/\¢y

. : .
= Uikl =mk =+ Yool 0. =0 = Yoorli =k = + i T —— ¢Ik¢1k|kx=w,ky=o - ¢;k¢2k|kx=0,ky=w

+ ¢;k'ﬂ2k|kx=w,ky=o =2 [agay + alya ]+ > [BiBi+ BlxBaad + ¢;k¢1k|kx=o,ky=o - ‘//Jlrk‘plk|kx=mky=w

k>0 k>0

; ; 1 1 i f
+ ¢ﬁk¢2k|kxzo,ky:o - ¢’2k'7//2k|kX:77,ky:7r + lek'r//lk|kX:O,ky:7r - lr/llk'//Ik|kX:7T,k),=0 - w2k¢2k|k)(:0,k)_:77 + wzkl//2k|kx=7r,ky=0’ (10)

with

[ )=enl-] )] )
()= -2 8)]( 22 )

Here k=0 means that (k,,k,)=(0,0), (0,7), (,0), or
(m,m), and k>0 means that k,>0 or k,=0, k,>0, and k
#0.

We note that both « band and B band have a positive
energy Ey=1. a.y, B+ will annihilate the mean-field
ground state |V ean)s

atk|\ymean> =0, Btk|q,mean> =0.

It needs to be pointed out that the above formulas for the
mean-field fermion Hamiltonian are valid only for even-by-
even lattice with periodic boundary condition, i.e., (m,n)
=(0,0). For other cases (even-by-even lattice with antiperi-
odic boundary conditions, and even-by-odd, odd-by-even,
and odd-by-odd lattices with both periodic boundary condi-
tion and antiperiodic boundary conditions), one or more of
the four high-symmetry points at momentum space k*
=(0,0), (0,m), (a,0), (7, ) are absent, which is shown in
the table in the Appendix.
We also note that, for K # 0,

_ T
ag =wpin g+ vy g

T * *
aly=—vh g+ ”k‘ﬂlr,—k-

The condition ay|® ean)=a_g|Peany =0 implies that (if we
only consider the k and —k levels)

|q)mean> = (Uk + uklﬁih,—kl/;{,k)|o>'

We see that k # 0 levels always contribute even numbers of
fermions. Also, since vk+uk¢1_kt//;k carries 0 momentum,
we see that the contribution to the total momentum from the
k # 0 levels is zero.

Thus to determine if the mean-field ground state contains
even or odd number of ¢/ fermions, we only need to examine
the occupation on the four k=0 momentum points: k
=(0,0), (0,), (7,0), (7, 7). The Hamiltonian on those four
points is contained in Eq. (10). All the negative-energy levels
are filled in the mean-field ground state. On an even by even
lattice and for the (m,n)=(0,0) Ansatz, all the momenta
(7,0), (0,7r), and (7, ) are allowed. Thus the (7r,0) level
and the (77, ) level each is occupied by a ¢; fermion, and
the (0, ) level and the (7, 7) level each is occupied by a i,
fermion. The total momentum of the ground state is (7, 7).
Such a mean-field ground state has even numbers of fermi-
ons. It will survive the projection and lead to a physical spin
ground state. Other situations can be calculated in the same
way. Here we only summarize the result: on an even by even
lattice, there exist four different degenerate ground states.
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TABLE II. Crystal momenta of the degenerate ground states,
(m,n)=(0,0),(0,1),(1,0),(1,1), of the Z2E spin liquid on four
different lattices, (L,,L,)=(even,even), (even,odd), (odd,even), and
(odd,odd).

(K, K,) (ee) (eo) (oe) (00)
(00) (7, ) — — —
(01) (0,0) — (0,0) (0,0)
(10) (0,0) (0,0) — (0,0)
(11) (0,0) (0,0) (0,0) —

However, on other kinds of lattice (even by odd, odd by
even, and odd by odd), there exist only two different ground
states. The other two states are projected out since the mean-
field ground states contain odd numbers of fermions. The
crystal momenta of the degenerate ground states can also be
calculated which are summarized in Table II.

V. MUTUAL U(1) XU(1) CS THEORY

In Secs. III and IV, we have calculated the topological
properties of the Z2A and the Z2E states. Due to their dif-
ferent topological properties, we find that the two states have
different topological orders. Then an important issue is to
find the low-energy effective theories that describe the two
different topological orders. We find that a mutual
U(1) X U(1) CS theory with different projective realizations
of the lattice symmetry can describe the two kind of topo-
logical orders. We reach the conclusion by comparing the
topological properties of the mutual U(1) X U(1) CS theory
with those of the Z2A and the Z2E states. All the topological
properties, including topological degeneracy, quantum num-
bers, and edge states agree, indicating the equivalence be-
tween the Z, topological states on lattice and the mutual
U(1) X U(1) CS theory.

A. Mutual U(1) XU(1) CS theory

First we introduce the Lagrangian for the mutual
U(1) X U(1) CS theory

1 1
Ler=——5n) = —5(F ) 11
eff 4e§(flu. 4ei( ,u) ( )
1 MVN I TAM
+7—Te A dyay +iatj, +iAR] (12)

where f,, is the gauge-field strength for gauge field a, and
F,, is the gauge-field strength for gauge field A,,. The exci-
tations are described by the currents, which are defined as
Ju=i»pa) and J,=(J;,ps). The gauge charges of a, and A,
are quantized as integers. The mutual CS theory in above
equations has been used to study the topological order in
frustrated Josephson-junction arrays.!*!> In addition, similar
mutual CS theory was proposed to be the effective gauge
theory of doped Mott insulator?*2! for high T, superconduct-
ors.
From the equation motions for a, and A,,
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1 1 L .
_28 (0')/.Lflu,}\)+7_T€ F/.LVz_ljlu,»
a

1 .
)+ ;e‘“”‘fw; — iy,

1
- — (. F
26/2\('“#)\

we find that a U(1) charge for gauge field A, induces flux of
gauge field a,. As a result, the U(1) charge for gauge field
A, and the U(1) charge for gauge field a, have a semionic
mutual statistics. That is, moving an A, charge around an a,,
charge generates a phase 7. This catches the key topological
property for the Z, spin liquid. It is well known that the Z,
spin liquid states contain Z, vortex and Z, charge excitations.
Moreover, the Z, vortex and the Z, charge have semionic
mutual statistics between them. So we will propose that the
mutual Chern-Simons theory in Eq. (11) describes a Z,
gauge theory. The A, charge can be identified as the Z,
charge and the a,, charge as the Z, vortex.

Furthermore, the energy gap for both of the gauge fields
comes from the mutual CS term

my, ~ €,€y,, my ~ €,€4.

The mutual U(1) X U(1) CS theory describes a gapped topo-
logical state. This also agrees with the Z, topological states
where all excitations are gapped.

However, we have two kinds of Z, topological orders
Z2A and Z2E. How can the two different Z, topological
orders be described by the same U(1) X U(1) CS theory? In
the following we will show that two different Z, topological
orders are described by the same U(1) X U(1) CS theory but
with different realizations of the lattice symmetry.

To obtain two different realizations of lattice symmetry,
we note that Z, vortices for the exactly soluble model (the
Z2E state) live on the even plaquettes. The vortices on the
odd plaquettes are actually the Z, charge.®!' So under a
translation by one lattice spacing, a Z, vortex is changed into
a Z, charge! So in the mutual U(1) X U(1) CS theory that
describes the Z2E state, a " and A; must exchange under the
translation by one lattice spacing.

Also, the Z2A state contains 7 flux through each square.
This 7 flux also affects how a,, is transformed under trans-
lation. To see this, let us consider two Wilson loop operators
W, =ec % and W,=e%c,%% along two loops C; and C,.
Both loops wrap around the torus in the y direction. How-
ever, the loop C, is displaced from the loop C; by one lattice
constant in the x direction. In the following, we will assume
the lattice constant is a=1. Due to the 7 flux through each
square, we see that WZ:(—)L)'WI, where L, is the length of
the torus in the y direction. So under a translation by one
lattice constant in the x direction, a, must change to a,+m, to
account for the change in the Wilson loop.

The above discussion motivates us to define two types of
mutual U(1) X U(1) CS theories which have different real-
izations of translation symmetries. Let T, and T, be the trans-
lations by one lattice spacing in the x and y directions, re-
spectively. The first type of the mutual U(1) X U(1) CS

155134-5



KOU, LEVIN, AND WEN

theory is denoted as Z2A type which describes the Z2A state.
The 7 flux makes the gauge fields transform nontrivially
under translations

T'AT,=A,, T,/AT,=A +m,
1 1

T AT, =A+m, T, AT,=A,,

T;laxTx =a,, T;laxTy =a,+m,

1 1
T, aT.=a,+m T, a7, =a,. (13)

Since the translation 7 (7,) may shift A, (a,) by 7, this
reproduces the different patterns of crystal momenta of the
degenerate ground states on different lattices.

The other type of the mutual CS theory is denoted as Z2E
type that describes the Z2E state. It has no flux. However, the
gauge fields still transform nontrivially under translations

T;'AT,=a;, T;'aT,=A;, i=xy. (14)

A; and a; will exchange under a translation operation by one
lattice spacing.

B. Topological degeneracy

In Secs. VB and V C, we will calculate the topological
properties of the above two types of mutual CS theory. First,
we calculate the topological degeneracy for the ground
states. In the temporal gauge, Ay=0, and on an even-by-even
lattice, the fluctuations A; and a; are periodic. We can expand
them as

1 | .
(AX,A),) = <_®x + 2 Aic(e‘lx'k, _®y + 2 Aﬁemk) i
L, k Ly K

(15)

1

L,

1 N .
(a.ay) = (L—ﬂx + 2 age R —0,+ 2 a{;e‘x'k) , (16)
X k k

where k=(k,,k )=(2L—Tnx,2L—Tn},) where n,, are integers.
(A},A}) and (ay,a}) are the gauge fields with nonzero mo-
mentum, and (0,,0,) and (6., 6,) are the zero modes with
zero momentum for the gauge fields A; and a;. Because the
existence of the mass gap, the degree freedoms for gauge
fields with nonzero momentum (Ay,A;) and (ay,aj) have
nothing to do with the low-energy physics. It is the degree
freedoms of zero momentum (0,,0,) and (6,, 6,) that deter-
mine the low-energy physics. The effective Lagrangian Eq.
(11) determines the dynamics of (0,,0,) and (6,,6,) which
corresponds to two particles on a plane with a finite magnetic
field. (®,,60,) are the coordinates of the first particle, and
(©,,6,) are ‘the coordinates of the second particle. Thus we
map the original mutual U(1) X U(1) CS theory to a quantum
mechanics model of two particles (see Appendix). The en-
ergy spectrum for the quantum mechanics model can be
solved easily. The lowest energy levels for the above model
reveal the topological characters for the ground states. The
degeneracy for (0, 6,) degrees of freedom and the degen-
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eracy for (0,,6,) degrees of freedom are given as D(@x’gv)
=2 and D(g_)=2. For both the Z2A-type and the Z2E-type
CS theories, there exist four degenerate ground states

D= D(G)x’ey)D(@y’ex) =2X2= 4 (17)

However, the above result only applies to even-by-even
lattice. For other cases (even by odd, odd by even, and odd
by odd), the situations are changed. We will discuss those
more complicated cases in the Appendix. We find that for the
Z2A-type mutual CS theory, the ground-state degeneracy re-
main to be four for even-by-odd and odd-by-even lattices.
For the Z2E-type mutual CS theory, the ground-state degen-
eracy becomes two for even-by-odd, odd-by-even, and odd-
by-odd lattices.

One way to understand the later result is to note that if L,
is odd then one gauge field will turn into the other one as we
go around the lattice along the x direction. Thus the gauge
fields have a twisted boundary condition

Ax+L,y)=aix,y), alx+L,y)=A4,x).

This twisted boundary condition means that A, and a, can
be viewed as a single gauge field on a lattice whose size is
doubled in the x direction. There are only two zero modes in
the mode expansion. As a result the ground-state degeneracy
on even-by-odd, odd-by-even, and odd-by-odd is reduced to
two. We can also use the CS theories to calculate the crystal
momenta of the ground states (see Appendix). The results
agree with those in Tables I and II.

It is well known that for a U(1) X U(1) CS theory in con-
tinuum limit, the ground-state degeneracy is determined by
the Chern-Simons coefficients and the genus of the manifold.
But this result is obtained with an assumption that the U(1)
gauge fields satisfy a simple periodic boundary condition.
However, for certain realizations of lattice translation sym-
metries, we see that the U(1) gauge fields satisfy certain
nontrivial periodic boundary conditions, depending on if the
lattice is even by even or odd by odd etc. This leads to
different ground-state degeneracies even though the Chern-
Simons coefficients are not changed.

C. Edge states

We can also use the mutual U(1) X U(1) CS theories to
study edge excitations. First, let us consider the exact soluble
model (4) on a finite L, X L, lattice with a periodic boundary
condition only along the y direction. The lattice has two
edges along the y direction located at i,=0 and i,=L,. Such a
lattice model can be obtained from the periodic lattice model
(4) by setting g=0 for a column of plaquettes. The resulting
model is still exactly soluble. We find that the ground states
have ~2Lv-fold degeneracy  which arises from
0107, :0%,5,505,5= = 1 on the column of plaquettes with g
=0. Those degenerate states can be viewed as gapless edge
excitations on the two boundaries. Since there are 2L, edge
sites, we find that there are 2 edge states per edge site,
indicating that the gapless edge states are described by Ma-
jorana fermions. Indeed, the gapless edge excitations can be

mapped to a Majorana fermion system exactly.
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To obtain the gapless edge states from the mutual CS
theories, we introduce

ayy=Aytay, a ,=A,-a,

and rewrite the mutual U(1) X U(1) CS effective theory as

MVN _

1
- A
Lefr= 4,”_a+,,uava+,)\f 4770_,“0",,61_3\6’“'/ + ...

(18)

The charges of A, and a,, are quantized as integers. Convert-
ing the A, and a,, charges to the a, , and a_ , charges, we
find that the a, , and a_, charges are still quantized as inte-
gers. However, (1/2,1/2) charge for the a, , and a_, field is
also allowed.

The mutual CS theory [Eq. (18)] has one right-moving
and one left-moving branch of edge excitations. The two
branches of the edge excitations are described by the follow-
ing one-dimensional (1D) fermion theory'®

['edge = lﬂjq(f?; - Uax) lsz + wz((?t + U(?x) ‘//L +...

at low energies, where (...) represent terms that are consis-
tent with the underlying symmetries of the lattice model. i
carries a unit of a, charge and ¢_ a unit of a_ charge. We
note that the A, and a,, charges, as the Z, charge and the Z,
vortex, are conserved only mod 2. So (...) may contain terms
that change (a,,a_) charge by (1,1) and (1,—1). Thus, the
following terms

ayriy + b +h . c.

are allowed in the low-energy effective Lagrangian. The ad-
ditional terms will open an energy gap for the edge excita-
tions and one may conclude that the Z2E topological ordered
state has no gapless edge excitations in general.

However, the above conclusion is not quite correct. We
see that although the presence of the edge breaks the trans-
lation symmetry in the x direction, the finite system still has
the translation symmetry in the y direction. Under the trans-
lation in the y direction by lattice spacing, A, and a, are
exchanged, or (a, ,,a_,) are changed into (a, ,,-a_,). So
the translation in the y direction changes the sign of the a_
charge and hence changes ¢; to zﬂ’L As a result, only the
following term

ayr(p+ i) +h.c.

can be added to the edge effective Lagrangian, which does
not break the translation symmetry along the edge.
Introducing Majorana fermions

Yr=Ng+ing, Yr=N +iny,
we can rewrite the edge effective Lagrangian as
Ledge = Ng(d; = vI)Ng + (9, = v) Mg + N (9, + VIIN,
+ 77L(O')t + U(?x) N+ Z(a)\RhL + ia)\RﬂL +h. C.) .

The aNgh;+iakgm; term gaps a pair of Majorana fermions
and leave the other pair gapless. So the Z2E state has right-
moving and left-moving gapless edge excitations described
by Majorana fermions, provided that the edge is in the x or y
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direction. The presence of the translation symmetry in the x
or y direction is crucial for the existence of the gapless edge
excitations for the Z2E-type mutual U(1) X U(1) CS theory
and the exact soluble model.

For the Z2A state, although the low-energy effective
theory has the same form as the exactly soluble model, the
translation does not induce the exchange between A, and a,,.
As a result, in general, there are no gapless edge excitations
for the Z2A-type mutual U(1) X U(1) CS theory and the Z2A
state.

VI. CONCLUSION

In this paper, two kinds of Z, topological ordered states
for frustrated spin systems, Z2A and Z2E states, are studied.
Using the SU(2) slave-particle theory, we calculate their
ground-state degeneracy, their ground-state quantum num-
bers, their gapless edge state, and the projective symmetry
group of their quasiparticles. We propose a mutual
U(1) X U(1) Chern-Simons theory with two different realiza-
tions of lattice symmetry as the effective-field theories that
describe the two types of topological orders. We show that
the effective theories produce the same low-energy physics,
including the degeneracy of the ground state and the quan-
tum number for the ground state and the edge states. It turns
out that the different Z, topological orders are reflected in
different realizations of the lattice symmetry in the same ef-
fective mutual Chern-Simons theory.

We would like to mention that the Z2A phase appears to
be an example of “weak symmetry breaking in dimension 2,”
while the Z2E phase appears to be an example of “weak
symmetry breaking in dimension 1” discussed in Ref. 22. So
these two phases are examples of the two basic ways that
lattice symmetries and topological structure can be en-
tangled.
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APPENDIX

1. Topological degeneracy for the Z2E state

We have used Ansditze [uf]m") 775;”’")]

=[(_)msx(ij)(_)nsy(ij)gij,(_)msx(ij)(_)nsy(ij) 7Iij] to describe the
four degenerate ground states for the Z2E state. Here m,n
=0,1.s,,(ij) have values O or 1, with s, ,(ij)=1 if the link ij
crosses the x or y line (see Fig. 1) and s, ,(ij)=0 otherwise.

It is pointed out that the above result of four degenerate
ground states is right only for the Z2E state on an even-by-
even lattice. On other kinds of lattice (even by odd, odd by
even, and odd by odd), there exist only two different ground
states. The other two states are projected out since the mean-
field ground states contain odd numbers of fermions.

Let us calculate the topological degeneracy for the Z2E
state on different lattices in detail. It was pointed out that the
total number of the ¢ fermions on k and -k is always even if
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k #0. To determine if the mean-field ground state contains
an even or odd number of ¢ fermions, we will only pay
attention to the occupation on the following four momentum
points: k=(0,0), (0,7), (7,0), (7, 7).

First, we discuss the topological degeneracy for Z2E state
on an even by even lattice. For the ground state described by
(m,n)=(0,0), the energy levels for both ¢, and ¢, have
positive energies at k=(0,0) [see Eq. (10)]. Thus the k
=(0,0) level is not occupied. We also see from Eq. (10) that,
at k=(0, ), ¢, has a positive energy and #, has a negative
energy. Thus the k=(0, ) level is occupied by a i, particle.
Similarly, we find that the k=(7r,0) level is occupied by a i,
particle, the k= (7, ) level is occupied by a i, particle and
a i, particle. Therefore, four particles occupy the points
(0,0), (0,7), (,0), and (7,7). Because the mean-field

ground state [¥" “7i ) has an even number particles, it
survives the even-particle-per-site projection.

Also, the total contribution to the crystal momentum from
the k # 0 levels is zero. Thus the total crystal momentum is
determined by the particles that occupy the (0,0), (0, ),
(77,0), and (77, ) levels. We find that the total crystal mo-
mentum of the above state is 0X(0,0)+1X(0,m)+1
X (,0)+2 X (7, 7)=(77, 7).

For the ground states described by (m,n)=(1,0), (m,n)
=(0,1), and (m,n)=(1,1), none of the high-symmetry points
(0,0), (0, ), (47,0), and (77, 7) exist. Thus the ground states
have even number particles, so they are all permitted under
the even-particle-per-site projection. The total crystal mo-
menta of the above states are all zero.

Therefore, there are four degenerate ground states on
even-by-even lattice. One carries crystal momentum (7, 77)
and the other three carry crystal momentum (0,0). This cor-
responds to the first column of Table II.

Second, we discuss the topological degeneracy for Z2E
state on an even-by-odd lattice. For the ground state de-
scribed by (m,n)=(0,0), the k=(0,0) level is not occupied,;
the k=(,0) level is occupied by one i, particle as before.
The points (0,77) and (7, 77) do not exist. As a result, only

one particle occuples ttle )hlgh-symmetry points. Because the
0,0
ground state |\I’(“U i ) has odd number particles, it is

forbidden by the even-particle-per-site projection.

For the ground state described by (m,n)=(0, 1), the points
(0,0), (0, ), (7,0), and (7, ) do not exist. Thus the ground
state has even number particles, so it is permitted by the
projection. Such a state carries a (0,0) crystal momentum.

For the ground state described by (m,n)=(1,0), the k
=(0,m) level is occupied by a i, particle, and the k
=(m,) level is occupied by a ¢, and a ¢, particles. The
(7r,0) and (0,0) points do not exist. As a result, three par-
ticles occupy the high-symmetry points. The state is forbid-
den by the projection.

For the ground state noted by (m,n)=(1,1), the points
(0,0), (0,), (7,0), and (7r,7) do not exist. Because the
ground state |‘If](:gan ij )> has even number particles, it is
also permitted by the projection. Such a state also carries a
(0,0) crystal momentum.

Therefore there are two degenerate ground states on an
even by odd lattice. Similarly topological degeneracy for
Z2E state on an odd by even is also two. All those states
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carry a (0,0) crystal momentum. This corresponds to the sec-
ond and third columns of Table II.

Last, let us discuss the topological degeneracy for Z2E
state on an odd-by-odd lattice. For the ground state described
by (m,n)=(0,0), the k=(0,0) level is not occupied. The
points (7,0), (0,7), and (77, 7) do not exist. As a result, no
particle occuples the high-symmetry points. The ground state

|\I’£n(0 N 00)) has even number particles which is permitted
by the projection.

For the ground state described by (m,n)=(1,0), the k
=(,0) level is occupied by a i, particle. The points (0,0),
(0,7), and (7r,7) do not exist. As a result, one particle oc-
cupies the hlgh symmetry points. Because the ground state

|\Pifl‘i;:l) i ) has odd number particles, it is not permitted by
the projection.

For the ground state described by (m,n)=(0,1), the k
=(0, ) level is occupied by a ¢, particle. The points (0,0),
(7,0), and (7, 7) do not exist. As a result, one particle oc-
cup1(es0)th(e0h1gh symmetry points. Because the ground state

|w4; 7)) has odd number particles, it is not permitted by

the projection.

For the ground state described by (m,n)=(1,1), the k
=(m,m) level is occupied by a #; and a ¢, particle. The
points (77,0), (0, ), and (0,0) do not exist. As a result, two
particles occupy the high-symmetry points. The ground state

(LD (1)
|w4; 7)) has even number particles, so the state is per-

mitted by the projection.

In conclusion, Z2E state has fourfold degeneracy on an
even-by-even lattice and twofold degeneracy on an even-by-
odd lattice, odd-by-even lattice, or odd-by-odd lattice. The
crystal momenta of those ground states are given by Table II.

2. Quantization for the mutual U(1) X U(1) CS theory

To calculate the topological properties for the ground
states of the mutual U(1) X U(1) CS theories, one needs to
quantize the gauge fields. We will choose the temporal gauge
Ap=0. In the temporal gauge, the physical degrees of free-
dom are described by (A,,A,) and (a,,a,). We will concen-
trate on the dynamics of 9”/ and O, . ’

After the mode expansion, the effective Lagrangian

1 1 1
[ 2 - 2, = _uV\
Logr=— 462 (fun)™— 46% (F )"+ —€"A d,a, (Al)

can be written as

1 . 1 . 1 ., 1 . 1 .
= —MxG)i + —My®2, + —mxﬂi + —m\ﬂﬁ -—0.0,
2 2 Y2 277 27

1 . 1 . 1 .
-=—0,0,+—00,+—00,+ ...,
21 21 21

where (Ay,A}) and (ay,ay) represent the terms that contain
I Ly
2 L( H

. Because the existence of

only the k# 0 modes. The masses are given as M =
M= IL—’ and m, 122"', my=
the mass gap, the degree freedoms for gauge fields with non-
zero momentum (Ay,Aj) and (ay,a;) have nothing to do

with the low-energy physics.

155134-8



MUTUAL CHERN-SIMONS THEORY FOR Z,...

From the effective Lagrangian, one can define the conju-
gate momentum for (0,,0,) and (6,,6,),

JdL . 0,
P@)‘ eff @ + —
x (?®x 277-
JL 0
Py =—2=M0,-
Y Fy@y 27T
JdL ,
Po = .Eff=mx6x+_L’
* (90)( 21T
(9Leff ; ®x
p0V= . =my0y_2_'
T u

Using the conjugate momentum we write down the fol-
lowing effective Hamiltonian to describe the low-energy
physics of the mutual U(1) X U(1) CS theory

Py — — +— Py +—
O, 2 Pa)_ 2T ®, 2
+ +

2M 2m 2M

x X y

[ro-52)
Po, o

2m,

eff =

+

By choosing different Landau gauges, the effective Hamil-
tonian can be rewritten as

6,\* 0,\’

Po,~ ) r ( - ) ¢
<®X T Py, P, T PG)‘,.
—_—

Hepe=
¢ 2M, 2m,, 2m, 2M,
or
2 + 2 +—=
Py Pe, T Py, 5" 7
Hy=—+——F———+—+————.
2M, 2m,, 2m, 2M,
As a result, the low-energy properties of the

U(1) X U(1) CS theory is described by the above Hamil-
tonian, which is a quantum mechanics model of two particles
on a plane in magnetic field. Then one can obtain the topo-
logical degeneracy of the mutual U(1) X U(1) CS theory
from the Landau degeneracy of the corresponding quantum
mechanics model.

3. Topological degeneracy and crystal momenta of Z2E-type
mutual U(1) XU(1) CS theory

In this section, we will calculate the topological degen-
eracy and crystal momenta of Z2E-type mutual
U(1) X U(1) CS theory. Z2E-type mutual U(1) X U(1) CS
theory is characterized by a special realization of the lattice
translation symmetry defined in Eq. (14). We will see that
such a realization of the translation symmetry leads to four-
fold degeneracy on even-by-even lattice, and twofold degen-
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eracy on even-by-odd, odd-by-even, and odd-by-odd lattices.

Let us first calculate the ground-state degeneracy of the
Z2E state on an even-by- even lattice in detail.

We note that a, and a, +— are related by a U(1) gauge
transformation. Thus 6,=0 and 0.=2 are also related by a
U(1) gauge transformation, which implies that 6,=0 and 6,
=21 should be viewed as the same point. Similarly each of
the three pairs, 6,=0 and 6,=27, ©,=0 and ©,=2m7, O,
=0 and O,=2, also should be viewed as the same point.
Thus the above Hamiltonian describes two particles, each
moves on a 27X 27 torus. Each particle also see 47 flux
through the torus.

The first particle is described by (0,, 6,). Since there are
two units of flux through the torus, the ground states for the
first particle has a degeneracy D(@) 0)—2 Similarly, the
ground states for the second particle also has a degeneracy

D )=2.

As a result, for the Z2E-type mutual U(1) X U(1) CS
theory, the ground states have fourfold degeneracy on an
even-by-even lattice

D = D(GX’Q\')D(G)”HX) = 2 X 2 = 4 (A2)

Moreover, the wave-functions W for the four ground states
with degenerate energy are given as |1), |2), |3), and |4),

1 1,
v, zexp{—aﬁi]exp{—ﬂﬁay],
S I PR N N e
y=e 'O exp —477(0),—17) exp| =~ 0, .
-i6 ! 2
Wy = e "% exp ——92 exp| - — (O, —m)" |,
4 -

) ) 1 1
~ ,—if, -0, _ _ R _
Y, = et exp[ 477(0y )’ 47T(®y 77)2} .
(A3)

Now let us calculate the crystal momentum for the
fourfold-degenerate ground states. For the Z2E-type mutual
U(1) X U(1) CS theory, the translation operations T; are

known as
1 1
Zi AjTi=aj, ]i ajT,-=Aj.

Thus we have the translation operation for its zero modes
(0,,0,) and (6,,6,):

T;lexTx_ ®x7
1

T, 6,1, = 0,

T;la Tx ®vv

T,'0.T,=0,.

Under the translation operators, we have

Tlj)y=1j).
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1) =),
j=1,4.
T.2)=13), T)2)=13),
T3)=[2), T,3)=).

So |2) and |3) cannot be the eigenstates for the ground state.
Instead, the eigenstates for the ground state are given as
2)=%5(|2)+]3)) and [3")=5(]2)~[3)). For |2') and |3"), the
eigenvalues of the translation operators are given as

T2)=[2". T2 =[2"),

TJ3)=e"3), T3)=e"3").

As a result, on an even-by-even lattice, the crystal momen-
tum of the E-type mutual U(1) X U(l1) CS theory is
(K,.K,)=(0,0) for the ground states [I),
(K,,K,)=(,m) for the ground state |3").

For other cases, on an even-by-odd, odd-by-even, or odd-
by-odd lattice, the situations are changed. Because for odd
number rows along the x or y axis, one gauge field A, (a,)
will turn into the other one a, (A,). For example, on a
L, XL, even-by-odd lattice (L, is an even number and L, is
an odd number), under such a twisted boundary condition for
odd number L, one has

A lxy+Ly)=a,(x,y),
a,(x,y+Ly)=A,xy),
A (x+L,y)=A,xy),

a,(x+L,y)=a,(x,y). (A4)

The quantization for gauge fields in Eq. (15) cannot be ap-
plied to the gauge fields under a twisted boundary condition.

Now after putting the mutual U(1) X U(1) CS theory on a
L, X (2L,) even-by-odd lattice, we have a periodic boundary
condition,

ALy +2L) =A,(x,y),a,(x,y +2L,) = a,(x,y).

In the temporal gauge, Ay=0, and on such even-by-even lat-
tice, we can expand the fluctuations for the gauge fields as

(A,, y)z( 0, +2A" 'X"2—® +2A> wk)

}
(A5)

(ax,a),):( 0, +2a" ik 2—0 +Ea} ”‘k)

(A6)

where k=(k,,k,)= (2 Mol n ,) where n,, are integers.
(Ay.A}) and (ak,ak) are the gauge fields with nonzero mo-
mentum, and (®,,0,) and (6, 6,) are the zero modes with
zero momentum for the gauge fields A; and a;. However, Ak
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and af( (0, and 6;) are not independent and have constraints;
to obey the original twisted boundary condition in Eq. (A4),
we must have

Ak—a{(e’l“ k) —ai(el wn,

®i: 0i' (A7)

To calculate the topological degeneracy, we map the origi-
nal mutual U(1) X U(1) CS theory on even-by-odd lattice to
two-particle quantum mechanics model on a torus in a mag-
netic field 717 In the “Landau gauge,” the effective Hamil-
tonian of the two-particle quantum mechanics model is given

as
6. \2 ( o )2 ( 2
- + == Py + -
( 0,75 ) P, 2 0,75
Heff_ + +
2M, 2m, 2M,
o \2
et
x 2
+ b
2m,
where M :%%{ M, ——oi and m,= 1,%1, m, —%% How-

ever, because of the constralnt in Eq. (A7) the two particles
(6,,6,) and (©,,0,) are bound into a single particle! As a
result, there are two degenerate ground states instead of four.
In addition, we can write down the wave functions for the
two ground states in the Landau gauge with topological de-
generacy: for the wave-function 1),

1 1.2
T, =e 47763—e‘4770v

and the wave-function |2),

‘Ifzze 10Xe e (0 —77) =e 10X€ 4 O —71')2

Now let us calculate the crystal momentum for the
twofold-degenerate ground states. The ground states are in-
variant under the translation operations

T.) =17,
T, =1j.
j=1..

Then the crystal momentum (K,,K,) is (0,0) for the E-type
mutual U(1) X U(1) CS theory on an even-by-odd lattice.

Furthermore, using the same method, we calculated the
topological degeneracies and the crystal momenta for the
ground states of the Z2E-type mutual U(1) X U(1) CS theory
on an odd-by-even or odd-by-odd lattice. The results are
similar to those on an even-by-odd lattice: the ground states
have twofold degeneracy and (K,,K,)=(0,0).

In summary, all the low-energy physical properties for the
Z2E-type U(1) X U(1) Chern-Simons theory match that for
the Z2E topological ordered state.
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4. Topological degeneracy and crystal momenta of Z2A-type
mutual U(1) XU(1) CS theory

In this section, we will calculate the topological degen-
eracy and crystal momenta for Z2A-type mutual
U(1) X U(1) CS theory. Z2A-type mutual U(1) X U(1) CS
theory are characterized by a special realization of the lattice
translation symmetry defined in Eq. (13). On even-by-even,
odd-by-even, or even-by-odd lattice, the low-energy proper-
ties of the U(1) X U(1) Chern-Simons theory is reduced into
a quantum mechanics model of two particles on a plane in
magnetic field. In addition, the translation symmetry defined
in Eq. (13) leads to the nontrivial crystal momenta of Z2A
state. However, on an odd-by-odd lattice, the situation is dif-
ferent. We will show that the four degenerate ground states
are all forbidden by translation invariance. As a result, an
emergent nonzero background charge leads to an infinity de-
generacy on odd-by-odd lattice for the Z2A state. In the fol-
lowing, we will show the exotic properties of Z2A state in
detail.

The effective Hamiltonian to describe the low-energy
physics of the Z2A type the mutual U(1) X U(1) CS theory
can be written in the Landau gauge as

Iy pﬂ, x P@),
—7T + + T +

Hey= :
T om, 2m, 2m, 2M,

It is noted that there exists the Heisenberg algebra for effec-
tive Hamiltonian. The “magnetic” translation operators U 0,
=e™Po,Oy™ and Use, = ™6, +0/™ consist of the Heisenberg

algebra
Uy Us, = ¢"Ug Uy .

Because the Hamiltonian is invariant for the operations U 0,
and Ug ,
)

U, HUy =H

U;{HU =H,

the ground states are the eigenstates of U o, and UO So one
can draw a conclusion from the Helsenberg algebra that the
ground states have two-degeneracy for (6,,0,). On the other
hand, for (O, 6,), one can do the same caléulation. So the
ground states have two degeneracy for (6,,0,) which is
characterized by the eigenstates of Uy —e’”(”ﬁ 0™ and
Ue, =e™Po. 0™ As a result, for the "Z2A- -type mutual
U (1) X U(1) CS theory, the ground states have fourfold de-
generacy

D= D(@)x’ay)D(@y’ax) = 2 X 2 = 4 (A8)
We denote the four ground states with topological degen-
, and [4),
Uy 1) =11),
Uyl2)=2),
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on|3> = em|3>,
Uy |4)=€'4),
and
U(~)y|1>= 1),

U(~)y|2>=€i7|2>,
U(~)y|3>= 13),

U®y|4) =e'™4).

Now let us calculate the crystal momentum for the
fourfold-degenerate ground states. For the Z2A-type mutual
U(1) X U(1) Chern-Simons theory, the translation operations
for the gauge fields are given by Eq. (13). The translation
operations for zero modes of the gauge fields are given as
Eq. (13)

G)xTy =0,
and
1
ro6r,.=0,

1
T, 0T,=60.+L.m,
T.'6.T,= 6,
1
T, 6,T,=0,.
As a result, the real ground states can be labeled by the

eigenvalues of U, (or U o, U@y, Ug ) which are 1 and 1.
We denote the four ground states with topological degen-

UyJ3)=273),

Uy |4)=€'4).

First, on an even-by-even lattice, the translation opera-
tions for its zero modes lead to trivial results

7,'0,1,=0,,

7,'0.7,=0,,

155134-11
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7,'0,T,=0,,
1
T, 0,T,=0,
and
T,'0,T,= 6,
T,'60.T,=0,,
T.'60.T.= 6,
T;l 0,y = 6,
From them, we have
Tx|]> = |]>,
Ty|j> = |]>,
j=1,2,3,4.

Then the crystal momentum (K,,K,) of the fourfold-
degenerate ground states |j) is (0,0).

Second on an odd-by-even lattice (L, is odd number and
L, is even number), the translation operations are given as

T,'0,T,.= 6,

1
T,'0,T,= 6, +m,

T.'0.T.= 6,
1
T, 6,T,= 6,
and
7,'0,T,=0,,

Now the translation operator 7, turns into the magnetic
translation operator U, =m0y ™,
X

Tliy = Up iy = e™Por®/7i),  i=1,2,3,4.

Under the translation operations on the wave functions in
Eq. (A3), we have

T |1 =1),
T|2)=12),
TJ3)=13),
TJ4)=14),

and

PHYSICAL REVIEW B 78, 155134 (2008)
T,[1)=U,|1)=11),
12y=U, 2=,

)= U2 =13,

Ty|4)= Uy [2) = €4).

Using the same method, we can obtain that the crystal mo-
mentum of the two ground states |1) and |2) is (0,0). The
crystal momentum of the other two ground states |3) and |4)
is (0, m).

Third, on an even-by-odd lattice (L, is even number and
L, is odd number), the translation operations for its zero

y
modes lead to nontrivial results

1
7,'0,7,=0,,
7,'0.7,=0,,

7,'0,T,=0,+m,

1
7,'0,7,=0,,
and
T,'0,T,= 0,
1
T, 6,1,=0,
T, 0.T.= 6,
1
T,'0,T,=0,.

Then the translation operator T, turns into the magnetic
translation operator Ug =e™?6,*%/™),
y

TJi)=Usg [i) = ™o, %), i=1,234.
From them, we have

TJ1)=Ue [1)=]1),
T,2)=Ug [2)=€72),
1J3)=Uo 3)=13).

TJ4) = U |4) = e714),

and
T|1)=11),
T,[3)=13),
T,[2)=12),

155134-12
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T,|4)=4).
The crystal momentum of two ground states |1) and [3) is
(0,0). The crystal momentum of the other two ground states
|4) and [2) is (r,0).
Fourth, for L, and L, are all odd numbers (on an odd-by-

odd lattice), the translation operations become

7,'0,T,=0, +m,

and

PHYSICAL REVIEW B 78, 155134 (2008)

1
T,°6,T,=6,.

Then the translation operators 7, and 7, turn into the
magnetic  translation  operator Ug =e™P0,*%/™  and
U@ :ewi(pqv+®y/77)’ Y

TJi) = U [i) = ™o, 2247,

Tyliy = Uy liy = e™Por®/ i), i=1,2,3,4.

Now T, and T, must obey the Heisenberg algebra for Uy
and U 0,

T.T,=¢"T,T,. (A9)

On the other hand, the translation symmetry of the system
leads to the commutation relationship between 7, and 7

T.T,=T,T,. (A10)

The only solution to Egs. (A9) and (A10) is |i)=0. That is,
there do not exist the four degenerate ground states at all. We
can see that for the real ground states, the A, and a,, charges
for the excitations cannot be zero on an odd by odd lattice.
So the nonzero background charge leads to an infinity degen-
eracy on odd-by-odd lattice for the Z2A type mutual
U(1) X U(1) CS theory.

As a result, all the low-energy physical properties for the
Z2A-type U(1) X U(1) Chern-Simons theory match that for
the Z2A topological ordered state.
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